
Who Is Bobby Tables?
Exploring Security with

Zach Zagorski
MIT Splash, Fall 2020

“Course Staff”
Me (Zach):
- Brown University ‘17, Computer Science
- Software Security Engineer, intentionally unnamed large tech company
- Help other engineers write code that is “secure by default”

Danna:
- Helping out, calling on students

Outline

1. Philosophy
2. Security for everyday humans
3. Security for programmers

What is cybersecurity?

https://xkcd.com/1573/

What is security?

Security is hard.

https://knowyourmeme.com/photos/877596-jurassic-park

https://xkcd.com/2335/

Security is hard. Why?

Engineers/developers build without considering security implementations
(thinking about the consequences).

“Some people create accounts and then never use them because they forgot their
passwords. What if we sent them an email with a link they could click that would
log them in without a password?”

“Adversarial mindset”/“red teaming” - think like the person who’s going to attack
the product, find and exploit the bugs.

https://xkcd.com/2030/

Security is hard. Why?

“Our entire field is bad at what we do.”

95%* of bugs are programmer error - the computer is just doing what we told it to
do!

We have a much greater tolerance for building flawed software than we do
real-world products since we can just release an update.
But will users people install updates? Not as often as we’d like.

*approximately. Other ~5% is OS, hardware, etc… outside the developer’s control.

https://xkcd.com/2347/

https://xkcd.com/2166/

Security is hard. Why?

Most software is not written from scratch - why reinvent the wheel?
Use other people’s code (“libraries”) to build yours.
Examples: bootstrap & jQuery (frontend web dev), Java’s standard library

Hundreds if not thousands of (transitive) libraries!

Over-dependence on other people’s code can be dangerous (example: left-pad).
And what if those have vulnerabilities?

https://xkcd.com/538/

Security is hard. Why?

Humans are bad at adversarial thinking, often easier than a technical exploit.

- Social engineering (IT support, crying baby)
- Phishing (click a malicious link/attachment, fake web page)

Example: Twitter Hack (July 2020) used social engineering (IT support) +
phishing (fake page to harvest credentials) + multi-factor authentication bypass.

Usability: increasing security often makes a system more annoying and/or difficult
for the average person to use. Example: OS updates (do you really want to restart
your computer right now?)

https://www.dfs.ny.gov/Twitter_Report#facts-of-the-hack

The Only Secure System
- One that has its disk drive demagnetized
- Turned off
- Inside a Faraday cage (isolated from electric fields)
- Buried in a hole and
- Sealed in concrete

Adversarial Mindset: Practice
The US Government issues citizens a 9-digit ID (Social Security
Number, or SSN) at birth, along with a physical card with their
name and SSN. Certain processes (opening a bank account, some
standardized tests, MIT background check, etc…) ask or require you
to provide all or part of your SSN, while others (getting a driver’s
license) require you to show your Social Security card.

What are some of the problems with this setup?

Adversarial Mindset: Practice
What are some of the problems with the setup of Social Security (as
described)?

- You might lose or destroy your card (e.g. if it gets wet).
- You might forget your SSN.
- A malicious person who knows your SSN can impersonate you.
- Cannot be changed or invalidated - you can’t* get a new

number, and once you lose your original card, even if you get a
new card you can’t stop someone using the old one (which -
conveniently - has your name on it too!).

Authentication

“How do I prove that I am who I say I am?”

- Something I have - key, ID card
- Something I am - fingerprints, retina scan, DNA test
- Something I know - password, encryption key, combination to lock
- Something I can do - signature, voice recognition, CAPTCHA

Authentication

What can go wrong with each method?

- Something I have - can be lost, stolen, or forged. Once distributed can be
difficult to take back.

- Something I am - can be lost or forged (fingerprints), can’t be changed.
- Something I know - easy to share, can be forgotten, verifier knows the secret
- Something I can do - what if you lose the ability to do it?

Passwords

Passwords are terrible.

We don’t choose good passwords, and we never have.

Worst Passwords of 2014 (25 most common):

1. 123456
2. password
3. 12345
4. 12345678
5. qwerty
6. 123456789
7. 1234
8. baseball
9. dragon

10. football

11. 1234567
12. monkey
13. letmein
14. abc123
15. 1111111
16. mustang
17. access
18. shadow
19. master
20. michael

21. superman
22. 696969
23. 123123
24. batman
25. trustno1

Source: https://www.teampassword.com/blog/worst-passwords-of-2014

Worst Passwords of 2018 (25 most common):

1. 123456
2. password
3. 123456789
4. 12345678
5. 12345
6. 111111
7. 1234567
8. sunshine
9. qwerty

10. iloveyou

11. princess
12. admin
13. welcome
14. 666666
15. abc123
16. football
17. 123123
18. monkey
19. 654321
20. !@#$%^&*

21. charlie
22. aa123456
23. donald
24. password1
25. qwerty123

Source: https://www.teampassword.com/blog/worst-passwords-of-2018

Other bad passwords?
Almost 10% of people have used at least one of the 25 worst passwords on this
year’s list, and nearly 3% of people have used the worst password, 123456.
(https://www.teampassword.com/blog/worst-passwords-of-2018)

Add dictionary words (“cat”, “dog”), dictionary words plus digits (“cat1”,
“pencil4”), uppercase first letter (“Cat, “Dog”), all caps (“CAT”, “DOG”), and all
numbers up to 999,999,999 to get much higher percentage (approximately 20%,
based on dump of 5 million passwords).

Given an encrypted password, can you figure out what it is? If you know the
encryption algorithm, and have an easy way to test potential passwords, trying all
of these isn’t computationally expensive… about 2^30 operations, which takes no
more than a few hours.

Passwords are terrible.

Security vs. usability: the more complicated a password is, the harder it is to
remember.
Especially with site-specific password requirements (lowercase letter, uppercase
letter, number, special character, length minimums or maximums).

“Through 20 years of effort, we’ve successfully trained everyone to use passwords
that are hard for humans to remember but easy for computers to guess.” - Randall
Munroe, XKCD

https://xkcd.com/936/

Is “correct horse battery staple” still sound advice?

While there’s plenty of spirited debate on the Internet (of course) about whether
this still holds up (especially as computers get faster / guesses become cheaper),
consensus seems to be that picking six random words (not four) will lead to a solid
password. See http://www.dicewarepasswords.com/about/

Math: For n dictionary words, guessing every combination of k requires nk
guesses. 171, 476 words in Oxford English Dictionary, so 4 words becomes 8.6 *
1020 (800 quintillion), 6 words becomes 2.5 * 1031 (25 nonillion).

Using a password manager will ensure you don’t have to remember more than a
couple of these, and it will automatically generate secure passwords. Some web
browsers also provide this functionality.

http://www.dicewarepasswords.com/about/

https://xkcd.com/2176/

Passwords are terrible.

Humans generally have bad “password hygiene” - we’ll come up with a password
we think is good and reuse it across multiple sites because it’s a strong password
that we can remember.

What happens if one of those sites has a password breach and attackers are able to
decrypt/crack the passwords? Individual accounts on other sites (same
username/password combo) will often be cracked.

https://haveibeenpwned.com/ can give a lower bound on which data breaches
your account is included in.

https://haveibeenpwned.com/

https://xkcd.com/1200/

Passwords are terrible. So are “security” questions.

Security questions may actually provide a path of less resistance for an attacker
focused on a specific account.
Am I more likely to be able to guess your password or your pet’s name? What if it’s
something I can just look up?

Introducing a less-secure authentication method lowers the security of the entire
system.

https://twitter.com/mattblaze/status/779117609891409927

Multifactor Authentication - require a password and something else! Another
example of security vs usability trade-off.

- Get a nonce sent to your device (SMS)
- Get a nonce from an app on your device (Duo or Google Authenticator).
- Fingerprint (take advantage of what you are)

Passwords are terrible. What’s the solution?

How are things vulnerable?

OWASP (Open Web Application Security Project) Top 10 Threats:

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML External Entities (XXE)
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Using components with known vulnerabilities

10. Insufficient logging and monitoring

https://owasp.org/www-project-top-ten/2017/Top_10.html

How are things vulnerable?

OWASP (Open Web Application Security Project) Top 10 Threats:

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML External Entities (XXE)
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Using components with known vulnerabilities

10. Insufficient logging and monitoring

https://owasp.org/www-project-top-ten/2017/Top_10.html

How are things vulnerable?

OWASP (Open Web Application Security Project) Top 10 Threats:

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML External Entities (XXE)
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS) (which is really a form of injection)
8. Insecure deserialization
9. Using components with known vulnerabilities

10. Insufficient logging and monitoring

https://owasp.org/www-project-top-ten/2017/Top_10.html

Heartbleed (OpenSSL)
Disclosed April 2014

Heartbleed

https://xkcd.com/1353/

What is SSL?

Secure Sockets Layer

A layer (level of network communication)
For sockets (client/server communication)
To communicate securely.

“SSL creates an encrypted connection between a web server and a web browser
allowing for private information to be transmitted without the problems of
eavesdropping, data tampering, or message forgery.” -
https://www.sslshopper.com/what-is-ssl.html

https://www.sslshopper.com/what-is-ssl.html

What is the Heartbleed bug?

In OpenSSL for two years before it was discovered.

Allowed clients to abuse the heartbeat between client and server (making sure
connection is still alive) to get more information about the server.

Technical explanation: “This serious flaw (CVE-2014-0160) is a missing bounds
check before a memcpy() call that uses non-sanitized user input as the length
parameter. An attacker can trick OpenSSL into allocating a 64KB buffer, copy
more bytes than is necessary into the buffer, send that buffer back, and thus leak
the contents of the victim's memory, 64KB at a time.”

If you understood that, great. If not, ...

https://xkcd.com/1354/

https://xkcd.com/1354/

https://xkcd.com/1354/

Why is it still relevant today?

Similar to common classes of issues in native code (C and similar languages with
manual memory management).

Not checking that two implicitly related values (length of string, amount of
memory to read) match, which often leads to Buffer Overflow.

Buffer overflow: allocate some amount of space, write more data than you have
space allocated for. The rest of the data goes elsewhere in memory. Carefully craft
that data to look like code, and you can convince the computer to run it, which
gives you control over the code being executed.

Injection Attacks
SQL Injection, XSS

Software is just code. What is code?

Two main types of programming languages: compiled and interpreted.

Interpreted language: a program (the “interpreter”) reads a human-readable
text-like file containing code and executes it.

Compiled language: a program (the “compiler”) reads a human-readable text-like
file containing code and converts it to a machine-readable file containing “machine
code”, which is then run by another program.

eval is evil: take a string containing code in that language and execute it.

What is an injection attack?

Injection attacks happen when we take data (usually user-provided data) and treat
it like code provided by the programmer.

This data will often look like a fragment of code. When we run it, we’ve “injected”
that code into the running program, hence the name.

What is SQL?
Structured Query Language for accessing tabular relational databases.

“SELECT * FROM table WHERE id = 2” will select

“SELECT author FROM table WHERE title = ‘Security’” gives “Julia”.

id title author body

1 Databases John Message1

2 Technology Joe Message2

3 Security Julia Message3

2 Technology Joe Message2

SQL Example

Suppose:
usernm = mumble() //get input from user
userpass = mumble() //get password from user
SELECT * FROM user WHERE name = ‘usernm’ AND password =
‘userpass’;

SQL Example

Suppose:
usernm = mumble() //get input from user
userpass = mumble() //get password from user
SELECT * FROM user WHERE name = ‘usernm’ AND password =
‘userpass’;

What happens if usernm is “zach”?

SELECT * FROM user WHERE name = ‘zach’ AND password =
`123456’;

Injecting into SQL

Suppose:
usernm = mumble() //get input from user
userpass = mumble() //get password from user
SELECT * FROM user WHERE name = ‘usernm’ AND password =
‘userpass’;

Some SQL syntax:
-- begins a comment - anything after it on a line is ignored.

What happens if usernm is “admin’;--”

Injecting into SQL

What happens if usernm is “admin’;--”?

SELECT * FROM user WHERE name = ‘admin’;--’ AND password =
‘123456’

Returns any row where name is “admin” - which may include admin’s password.

Injecting into SQL

What happens if usernm is “admin’;--”?

SELECT * FROM user WHERE name = ‘admin’;--’ AND password =
‘123456’

Alternative: What if you don’t know a valid username?
usernm is “’ OR 1=1;--”

SELECT * FROM user WHERE name = ‘’ OR 1=1;--’ AND password =
‘123456’

Returns every row in the table...

Other SQL Commands

INSERT INTO table_name VALUES (value_1, value_2);

DELETE FROM table_name WHERE condition;

UPDATE table_name SET column_name = column_value;

DROP TABLE table_name;

SQL Injection Attacks

https://xkcd.com/327/

Preventing SQL Injection

Sanitize inputs! We have a few options:

1. Block certain words, like ‘DROP TABLE’ - if you see it, remove it. Can’t
possibly go wro… ‘DRDROP TABLEOP TABLE’ … oops.

2. PHP’s mysql_escape_string() and mysql_real_escape_string()
3. Prepared Statements: instead of treating data (supplied by user) as code (via

substitution), treat it as data (arguments) to be used by code (function)

Other types of injection: XSS

Cross-Site Scripting - inject Javascript (inside <script> tags) into raw HTML.
The browser executes anything inside these tags whenever it finds it on the page…
including malicious redirection to other site, sending data to certain URL,
retweeting a tweet…

Solution: sanitize inputs (but don’t do it yourself! You’ll probably miss something).

Self-Retweeting Tweet

Exploited a vulnerability in Tweetdeck, a platform for viewing Tweets. All a user
would see is the heart at the end… but they would have retweeted it as soon as they
saw it. Regular Twitter users saw the full thing.

Security is hard.
But we’re getting better at it.

We know how to fix these things.

Or at least how to make them more difficult for attackers.

Passwords: password managers, multi-factor authentication, password generators.

Buffer overflow: stack canaries, non-executable stack.

SQL injection: prepared statements

XSS: Content Security Policy, Trusted Types

We also know how to find issues.

Password cracking attempts: “what would happen if someone got their hands on
our encrypted passwords?”

Static analysis: detect untrusted data flowing into somewhere it could be
interpreted as code.

Runtime analysis: fuzzing

So it’s not all doom and gloom.

Questions?

